KubeBlocks
BlogsKubeBlocks Cloud
⌘K
​
Overview
Quickstart

Operations

Lifecycle Management
Vertical Scaling
Horizontal Scaling
Volume Expansion
Manage Elasticsearch Services
Decommission Elasticsearch Replica

Monitoring

Observability for Elasticsearch Clusters

tpl

  1. Prerequisites
  2. Install Monitoring Stack
    1. 1. Install Prometheus Operator
    2. 2. Verify Installation
  3. Deploy a Elasticsearch Cluster
  4. Verifying the Deployment
  5. Configure Metrics Collection
    1. 1. Verify Exporter Endpoint
    2. 2. Create PodMonitor
  6. Verify Monitoring Setup
    1. 1. Check Prometheus Targets
    2. 2. Test Metrics Collection
  7. Visualize in Grafana
    1. 1. Access Grafana
    2. 2. Import Dashboard
  8. Delete
  9. Summary

Elasticsearch Monitoring with Prometheus Operator

This guide demonstrates how to configure comprehensive monitoring for Elasticsearch clusters in KubeBlocks using:

  1. Prometheus Operator for metrics collection
  2. Built-in Elasticsearch exporter for metrics exposure
  3. Grafana for visualization

Prerequisites

    Before proceeding, ensure the following:

    • Environment Setup:
      • A Kubernetes cluster is up and running.
      • The kubectl CLI tool is configured to communicate with your cluster.
      • KubeBlocks CLI and KubeBlocks Operator are installed. Follow the installation instructions here.
    • Namespace Preparation: To keep resources isolated, create a dedicated namespace for this tutorial:
    kubectl create ns demo namespace/demo created

    Install Monitoring Stack

    1. Install Prometheus Operator

    Deploy the kube-prometheus-stack using Helm:

    helm repo add prometheus-community https://prometheus-community.github.io/helm-charts helm install prometheus prometheus-community/kube-prometheus-stack \ -n monitoring \ --create-namespace

    2. Verify Installation

    Check all components are running:

    kubectl get pods -n monitoring

    Expected Output:

    NAME READY STATUS RESTARTS AGE alertmanager-prometheus-kube-prometheus-alertmanager-0 2/2 Running 0 114s prometheus-grafana-75bb7d6986-9zfkx 3/3 Running 0 2m prometheus-kube-prometheus-operator-7986c9475-wkvlk 1/1 Running 0 2m prometheus-kube-state-metrics-645c667b6-2s4qx 1/1 Running 0 2m prometheus-prometheus-kube-prometheus-prometheus-0 2/2 Running 0 114s prometheus-prometheus-node-exporter-47kf6 1/1 Running 0 2m1s prometheus-prometheus-node-exporter-6ntsl 1/1 Running 0 2m1s prometheus-prometheus-node-exporter-gvtxs 1/1 Running 0 2m1s prometheus-prometheus-node-exporter-jmxg8 1/1 Running 0 2m1s

    Deploy a Elasticsearch Cluster

      KubeBlocks uses a declarative approach for managing Elasticsearch Clusters. Below is an example configuration for deploying a Elasticsearch Cluster with create a cluster with replicas for different roles.

      Apply the following YAML configuration to deploy the cluster:

      apiVersion: apps.kubeblocks.io/v1 kind: Cluster metadata: name: es-multinode namespace: demo spec: terminationPolicy: Delete componentSpecs: - name: dit componentDef: elasticsearch-8 serviceVersion: 8.8.2 configs: - name: es-cm variables: # use key `roles` to specify roles this component assume roles: data,ingest,transform replicas: 3 disableExporter: false resources: limits: cpu: "1" memory: "2Gi" requests: cpu: "1" memory: "2Gi" volumeClaimTemplates: - name: data spec: accessModes: - ReadWriteOnce resources: requests: storage: 20Gi - name: master componentDef: elasticsearch-8 serviceVersion: 8.8.2 configs: - name: es-cm variables: # use key `roles` to specify roles this component assume roles: master replicas: 3 disableExporter: false resources: limits: cpu: "1" memory: "2Gi" requests: cpu: "1" memory: "2Gi" volumeClaimTemplates: - name: data spec: accessModes: - ReadWriteOnce resources: requests: storage: 20Gi

      Verifying the Deployment

        Monitor the cluster status until it transitions to the Running state:

        kubectl get cluster es-multinode -n demo -w

        Expected Output:

        NAME CLUSTER-DEFINITION TERMINATION-POLICY STATUS AGE es-multinode Delete Creating 10s es-multinode Delete Updating 41s es-multinode Delete Running 42s

        Check the pod status and roles:

        kubectl get pods -l app.kubernetes.io/instance=es-multinode -n demo

        Expected Output:

        NAME READY STATUS RESTARTS AGE es-multinode-dit-0 3/3 Running 0 6m21s es-multinode-dit-1 3/3 Running 0 6m21s es-multinode-dit-2 3/3 Running 0 6m21s es-multinode-master-0 3/3 Running 0 6m21s es-multinode-master-1 3/3 Running 0 6m21s es-multinode-master-2 3/3 Running 0 6m21s

        Once the cluster status becomes Running, your Elasticsearch cluster is ready for use.

        TIP

        If you are creating the cluster for the very first time, it may take some time to pull images before running.

        Configure Metrics Collection

        1. Verify Exporter Endpoint

        kubectl -n demo exec -it pods/es-multinode-dit-0 -- \ curl -s http://127.0.0.1:9114/metrics | head -n 50 kubectl -n demo exec -it pods/es-multinode-master-0 -- \ curl -s http://127.0.0.1:9114/metrics | head -n 50

        2. Create PodMonitor

        apiVersion: monitoring.coreos.com/v1 kind: PodMonitor metadata: name: elasticsearch-jmx-pod-monitor namespace: demo labels: # match labels in `prometheus.spec.podMonitorSelector` release: prometheus spec: jobLabel: app.kubernetes.io/managed-by podMetricsEndpoints: - path: /metrics port: metrics scheme: http namespaceSelector: matchNames: - demo selector: matchLabels: app.kubernetes.io/instance: es-multinode

        PodMonitor Configuration Guide

        ParameterRequiredDescription
        portYesMust match exporter port name ('http-metrics')
        namespaceSelectorYesTargets namespace where Elasticsearch runs
        labelsYesMust match Prometheus's podMonitorSelector
        pathNoMetrics endpoint path (default: /metrics)
        intervalNoScraping interval (default: 30s)

        Verify Monitoring Setup

        1. Check Prometheus Targets

        Forward and access Prometheus UI:

        kubectl port-forward svc/prometheus-kube-prometheus-prometheus -n monitoring 9090:9090

        Open your browser and navigate to: http://localhost:9090/targets

        Check if there is a scrape job corresponding to the PodMonitor (the job name is 'demo/es-multinode-pod-monitor').

        Expected State:

        • The State of the target should be UP.
        • The target's labels should include the ones defined in podTargetLabels (e.g., 'app_kubernetes_io_instance').

        2. Test Metrics Collection

        Verify metrics are being scraped:

        curl -sG "http://localhost:9090/api/v1/query" --data-urlencode 'query=elasticsearch_clusterinfo_up{job="kubeblocks"}' | jq

        Example Output:

        { "status": "success", "data": { "resultType": "vector", "result": [ { "metric": { "__name__": "elasticsearch_clusterinfo_up", "container": "exporter", "endpoint": "metrics", "instance": "10.244.0.49:9114", "job": "kubeblocks", "namespace": "demo", "pod": "es-multinode-master-2", "url": "http://localhost:9200" }, "value": [ 1747666760.443, "1" ] }, ... // more lines ommited

        Visualize in Grafana

        1. Access Grafana

        Port-forward and login:

        kubectl port-forward svc/prometheus-grafana -n monitoring 3000:80

        Open your browser and navigate to http://localhost:3000. Use the default credentials to log in:

        • Username: 'admin'
        • Password: 'prom-operator' (default)

        2. Import Dashboard

        Import the KubeBlocks Elasticsearch dashboard:

        1. In Grafana, navigate to "+" → "Import"
        2. Import dashboard from Elasticsearch Dashboard

        elasticsearch-monitoring-grafana-dashboard.png Figure 1. Elasticsearch dashboard

        Delete

        To delete all the created resources, run the following commands:

        kubectl delete cluster es-multinode -n demo kubectl delete ns demo kubectl delete podmonitor es-multinode-pod-monitor -n demo

        Summary

        In this tutorial, we set up observability for a Elasticsearch cluster in KubeBlocks using the Prometheus Operator. By configuring a PodMonitor, we enabled Prometheus to scrape metrics from the Elasticsearch exporter. Finally, we visualized these metrics in Grafana. This setup provides valuable insights for monitoring the health and performance of your Elasticsearch databases.

        © 2025 ApeCloud PTE. Ltd.